Ron receptor signaling augments mammary tumor formation and metastasis in a murine model of breast cancer.
نویسندگان
چکیده
The tyrosine kinase receptor Ron has been implicated in several types of cancer, including overexpression in human breast cancer. This is the first report describing the effect of Ron signaling on tumorigenesis and metastasis in a mouse model of breast cancer. Mice with a targeted deletion of the Ron tyrosine kinase signaling domain (TK-/-) were crossed to mice expressing the polyoma virus middle T antigen (pMT) under the control of the mouse mammary tumor virus promoter. Both pMT-expressing wild-type control (pMT+/- TK+/+) and pMT+/- TK-/- mice developed mammary tumors and lung metastases. However, a significant decrease in mammary tumor initiation and growth was found in the pMT+/- TK-/- mice compared with controls. An examination of mammary tumors showed that there was a significant decrease in microvessel density, significantly decreased cellular proliferation, and a significant increase in terminal deoxynucleotidyl transferase-mediated nick end labeling-positive staining in mammary tumor cells from the pMT+/- TK-/- mice compared with the pMT+/- TK+/+ mice. Biochemical analyses on mammary tumor lysates showed that whereas both the pMT-expressing TK+/+ and TK-/- tumors have increased Ron expression compared with normal mammary glands, the pMT-expressing TK-/- tumors have deficits in mitogen-activated protein kinase and AKT activation. These results indicate that Ron signaling synergizes with pMT signaling to induce mammary tumor formation, growth, and metastasis. This effect may be mediated in part through the regulation of angiogenesis and through proliferative and cell survival pathways regulated by mitogen-activated protein kinase and AKT.
منابع مشابه
Formation and Metastasis in a Murine Model of Breast Ron Receptor Signaling Augments Mammary Tumor
The tyrosine kinase receptor Ron has been implicated in several types of cancer, including overexpression in human breast cancer. This is the first report describing the effect of Ron signaling on tumorigenesis and metastasis in a mouse model of breast cancer. Mice with a targeted deletion of the Ron tyrosine kinase signaling domain (TK / ) were crossed to mice expressing the polyoma virus midd...
متن کاملVitamin D3-dependent VDR signaling delays ron-mediated breast tumorigenesis through suppression of β-catenin activity
The Ron receptor is upregulated in human breast cancers and correlates with enhanced metastasis and reduced patient survival. Ron overexpression drives mammary tumorigenesis through direct β-catenin activation and augmented tumor cell proliferation, migration and invasion. Ron and β-catenin are also coordinately elevated in breast cancers. The vitamin D receptor (VDR) antagonizes β-catenin sign...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملLoss of p120-catenin induces metastatic progression of breast cancer by inducing anoikis resistance and augmenting growth factor receptor signaling.
Metastatic breast cancer remains the chief cause of cancer-related death among women in the Western world. Although loss of cell-cell adhesion is key to breast cancer progression, little is known about the underlying mechanisms that drive tumor invasion and metastasis. Here, we show that somatic loss of p120-catenin (p120) in a conditional mouse model of noninvasive mammary carcinoma results in...
متن کاملFactor Receptor Signaling Cancer by Inducing Anoikis Resistance and Augmenting Growth Loss of p120-Catenin Induces Metastatic Progression of Breast
Metastatic breast cancer remains the chief cause of cancer-related death among women in the Western world. Although loss of cell–cell adhesion is key to breast cancer progression, little is known about the underlying mechanisms that drive tumor invasion and metastasis. Here, we show that somatic loss of p120catenin (p120) in a conditional mouse model of noninvasive mammary carcinoma results in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 65 4 شماره
صفحات -
تاریخ انتشار 2005